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A Flexible Data Analysis Tool
for Chemical Genetic Screens

assay by biologists, screening by automation special-
ists, and transfer of compounds to chemists for subse-
quent optimization. Successful chemical genetic proj-
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1Department of Biological Sciences ects, in contrast, typically involve active and continuous

sharing of data between chemists, biologists, and auto-2 Department of Chemistry
Columbia University mation specialists, collaborative refinement of screen-

ing and analysis protocols, and ongoing testing andFairchild Center, MC 2406
1212 Amsterdam Avenue retesting of compounds. Thus, a flexible data analysis

tool that allows data sharing is essential for collaborativeNew York, New York 10027
chemical genetic research.

Moreover, the number of compounds tested in chemi-
cal screens ranges from several thousand up to a million.Summary
In order to extract the maximal amount of information
from such screens, it is necessary to store electronicHigh-throughput assays generate immense quanti-

ties of data that require sophisticated data analysis chemical structures for all the tested compounds and to
create an automated method of processing the resultingtools. We have created a freely available software

tool, SLIMS (Small Laboratory Information Manage- assay data. These data are typically obtained in the form
of a large number of raw plate-reader files indicatingment System), for chemical genetics which facilitates

the collection and analysis of large-scale chemical the level of fluorescence, absorption, or luminescence
in each microtiter plate well.screening data. Compound structures, physical loca-

tions, and raw data can be loaded into SLIMS. Raw Thus, a critical issue for investigators performing
chemical genetic screens is information managementdata from high-throughput assays are normalized us-

ing flexible analysis protocols, and systematic spatial and data sharing [9–25]. While a number of commercial
systems have been developed to organize and to ana-errors are automatically identified and corrected. Vari-

ous computational analyses are performed on tested lyze large volumes of screening data for industrial orga-
nizations, such systems have fatal limitations for collab-compounds, and dilution-series data are processed

using standard or user-defined algorithms. Finally, pub- orative chemical genetic investigations, especially those
in academia [26–32]. First, existing systems are not de-lished literature associated with active compounds is

automatically retrieved from Medline and processed signed to enable collaboration between different institu-
tions and laboratories or to deliver searchable contentto yield potential mechanisms of actions. SLIMS pro-

vides a framework for analyzing high-throughput for the purpose of publication. Second, they are geared
toward static experimental design, and do not allowassay data both as a laboratory information manage-

ment system and as a platform for experimental biologists and chemists to rapidly modify experimental
and analytic procedures. Third, they do not allow incor-analysis.
poration of novel analytic modules as they are devel-
oped, such as automated detection of systematic errorsIntroduction
or automatic querying of databases to reveal potential
mechanisms of action of compounds. The net effectChemical genetics is an emerging approach for studying

biological processes [1–8]. In this genetic-like screening of these deficiencies is that collaborative projects that
involve a major screening component do not have aapproach, thousands of small organic molecules are

tested for activity in protein-targeted, cellular, or organ- readily available software option for managing and ana-
lyzing high-throughput chemical screening data.ismal assays. Subsequent studies use active com-

pounds to link phenotypic changes in cells or organisms Moreover, information management systems are
needed for controlling aspects of high-throughput ex-to the modulation of specific proteins’ functions. Thus,
perimental design and analysis [14, 15, 25–27, 29, 30].in this approach, organic compounds are used as tools
When performing high-throughput experiments that arefor determining the macromolecules that regulate cellu-
susceptible to artifacts induced by minor experimentallar and organismal phenotypes.
variations, it is essential to annotate and to documentChemical genetics optimally involves active collabo-
precisely experimental methods (e.g., equipment usagerations between chemists and biologists. This is in con-
and lot numbers of reagents [33–37]).trast to some large drug discovery organizations, in

Finally, artifacts that are generated through system-which high-throughput screening operations exist as
atic error need to be corrected to ensure proper re-independent service facilities. Interactions between
porting of biological results.chemists, biologists, and automation specialists in such

In this report, we describe the use of SLIMS in aorganizations may be limited to the nomination of an
chemical genetic screen related to spinal muscular atro-
phy (SMA). SMA is an autosomal recessive disease in-
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cord anterior horn, leading to progressive muscular atro-Institute of Technology, 320 Charles Street, Cambridge, Massachu-

setts 02141. phy, paralysis, respiratory failure, and infant death. SMA
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Figure 1. Molecular Genetics of Spinal Mus-
cular Atrophy

Spinal muscular atrophy (SMA) is an autoso-
mal recessive disease involving degeneration
of �-motor neurons in the spinal cord anterior
horn, leading to progressive muscular atro-
phy, paralysis, respiratory failure, and infant
death. SMA is caused by deletion of the sur-
vival motor neuron 1 (SMN1) gene, which en-
codes the SMN protein.
Humans have two copies of the SMN gene
(SMN1 and SMN2), which are located in a 500
kilobase (kb) inverted repeat on chromosome
5q13. In SMA patients, the SMN1 gene is de-
leted entirely and SMN2 is spliced such that
only �25% of mRNAs are full length, and
�75% of spliced transcripts exclude exon 7.
The SMN2 gene product is sufficient to main-
tain fetal development, but affected individu-
als manifest the symptoms of SMA early in
life and typically die as infants.

is caused by deletion of the survival motor neuron 1 selectivity suggests that a compound could be affecting
the promoter of the construct (which is not the same(SMN1) gene, which encodes the SMN protein. Humans

have a related copy of the SMN gene, denoted SMN2. SMN promoter found in human cells) or that it could be
modulating the growth rate of the cells. To this end, ourBoth are located in a 500 kilobase (kb) inverted repeat

on chromosome 5q13. In SMA patients, the SMN1 gene compound libraries were also tested on SMN1-mini-
gene-reporter cells. We refer to these cell types asis deleted entirely and SMN2 is spliced such that only

�25% of mRNAs are full length, while �75% of spliced SMN2-LUC and SMN1-LUC.
transcripts exclude the required exon 7. The product of
the SMN2 gene is sufficient to maintain fetal develop- Results
ment, but affected individuals manifest the symptoms
of SMA early in life and typically die as infants. We loaded electronic structures for 47,062 compounds

physically present and plated in our laboratory intoAs it has been previously reported that the lack of
exon 7 is the major cause of the SMN2 gene producing SLIMS and recorded for each compound the vendor,

initial amount purchased, and the location on each platea nonfunctional, truncated SMN protein (Figure 1) [38],
we developed a phenotype-based assay designed to of each compound. We designed SLIMS to support the

industry-standard structure data (SD) format. To loaddetect proper mRNA splicing. In our study, we used an
immortalized human cervical carcinoma cell line stably compound data, we performed an initial scan of each

SD file to validate that the compounds were correctlyexpressing a SMN-minigene-reporter reporter system
[39] that consists of exons 6 through 8 with intervening labeled and contained the appropriate information.

SLIMS can be configured to require mandatory data forintrons of either SMN1 or SMN2, which we obtained
from Androphy and Zhou (University of Massachusetts each compound, such as the compound’s vendor and

catalog number.Medical School, Worcester, MA). This construct also
contained a gene conferring neomycin resistance, which After we loaded compounds and plate locations into

the SLIMS database, we reformatted these electronicguaranteed that all cells growing in medium containing
G418 possessed the minigene construct. Luciferase, the plates from 96-well plates (provided by the original ven-

dors) to 384-well plates, which we used for screeningreporter gene’s product, is only produced when proper
splicing (i.e., incorporation of exon 7 in the final mRNA operations. This electronic reformatting operation was

accomplished through the use of a simple SLIMS wizard.transcript) occurs. Exclusion of exon 7 results in the
luciferase gene being out-of-frame and is therefore not Compound transfers from mother plates, which are de-

livered from the vendor, to daughter plates, which con-translated.
Over 47,000 compounds were screened using this tain the stock compounds diluted in DMEM, and assay

plates, which contain the compounds, and the cells di-assay: 20,000 compounds were from a combinatorial
chemistry library from ComGenex; 1,040 compounds luted in DMEM are also performed in this fashion.

The SMA study was performed over several monthswere from a National Institute for Neurological Disorders
and Stroke library; 2,337 compounds were from our An- and required considerable protocol optimization. To de-

velop the assay, protocols for data analysis needed to benotated Compound Library [40]; and 23,685 were from
our TIC Library. The TIC Library is a composite of com- dynamic and flexible, as new analyses and experimental

conditions were developed. SLIMS provides rapid meth-pounds available from TimTec, IBS, and ChemBridge
that were selected for specific properties, including nat- ods for generating protocols and allows multiple proto-

cols to be used while loading an assay into the database.ural-product likeness.
Due to the format of our assay, we were required This is especially important during the protocol optimi-

zation process, where old data should coexist withto study compounds that produced an effect that was
selective for the SMN2-minigene-reporter cells, as non- newer data from the same assay. SLIMS provides a
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Figure 2. Normalization of Raw Data in
SLIMS

(A) The SMA assay raw data. Notice the sys-
tematic drift in the raw data.
(B) The raw data are scored using the appro-
priate protocol descriptions. These data only
show small drift. Each data point is linked to
the compound so users can click on data and
see the related compound.
(C) The histogram of the percent enhance-
ment shows a standard assay response. The
small bump on the left is the negative con-
trols.

protocol-creation wizard to indicate the location of posi- Screening results, such as those obtained in this SMA
screen, typically exhibit a continuous range of activitytive and negative controls and to select the scoring
with a Gaussian distribution. There are several methodsscheme for normalizing each plate. Scoring systems
of selecting active compounds from such a large-scalebuilt into SLIMS include standard “percent enhance-
screen. In the threshold approach, a cutoff value is cho-ment” and “percent inhibition” computations. SLIMS is
sen for the selection of hits, and the active compoundssufficiently flexible that experiments can be loaded with
are confirmed in a repeat experiment, typically involvingmultiple protocols. This ensures that, if the protocol
a dose-response curve. The cutoff criteria for determin-changes during an experiment, all the experimental data
ing hits may be based on absolute activity (i.e., 2-foldcan be analyzed as a whole. As newly created assay data
activity versus control), the distribution (i.e., three stan-is added to SLIMS, they can be immediately visualized
dard deviations or greater from the mean), or a desiredin order to facilitate the optimization process. This is
number of compounds to be retested. Other methodsespecially important for detecting and rejecting failed
use a cutoff to select the most active compounds andplates.
then use techniques such as locating structural analogsVisualization of the data generated over time shows
to add to the secondary screening. The SMA screeninga significant drift in raw luminescence values for the SMA
data showed a standard Gaussian distribution, allowingscreen (Figure 2). This drift was caused by experimental
thresholds to be chosen for hit selection (Figure 2C).conditions changing from day to day (e.g., light changes,

Before the assay results could be analyzed, however,evaporation). This drift emphasizes that placing control
we needed to assess the quality of the screening data.data on each plate is a necessity for normalizing data
Due to the nature of the luminescence-based screen,taken over long periods of time. Using these controls,
the screening data tended to exhibit spatial artifacts.the normalized data exhibits much less drift (Figure 2).
These involved row effects, in which certain rows werePercent enhancement of each well compared to the
dimmer than others, and edge effects, in which the edgeuntreated control wells that were placed on each plate
of the plate tended to be brighter than the center. This(Figure 2) as follows:
can dramatically affect screening results due to the fact
that plate controls are located at the edges. Edge effectspercent

enhancement
� 100 � � x � negative

positive � negative
� 1�, and other systematic errors are caused by some repeti-

tive fault in the instrumentation. Indeed, a closer look
where positive are the untreated controls wells and neg- at the histogram in Figure 2C shows that the mean is
ative are wells containing only DMSO. The plots gener- less than zero, namely �3.8 percent enhancement. In
ated by SLIMS are tied into the database, and clicking our assay, the expected mean percent enhancement of
on a data point highlights the relevant compound and all tested compounds should be zero net effect in that

most tested drugs should not either enhance or inhibitprovides a quick way to scan for initial lead compounds.
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Figure 3. SLIMS Corrects for Spatial Error by
Determining the Outlying Periodogram Fre-
quency Amplitudes that Should Not Exist If
the Data Displayed a Random Spatial Distri-
bution

(A) The original plate with quite obvious plate
effect. Red wells are the highest in the plate
and blue values are the lowest.
(B) The distribution of peridogram amplitudes
and comparison of the random distribution
to the distribution detected in the plate. As
indicated, all frequencies that appear as outli-
ers are dampened to their values as if they
had been generated by a random process.
(C) The spatially corrected plate on the left
looks considerably better than the original.
Furthermore, the difference plate is shown
adjacent and indicates how the systematic
error was corrected. Blue values have been
suppressed in the original plate, and red val-
ues have been enhanced.
(D) The overall correction between the origi-
nal and corrected data. The green line consti-
tutes no change for the corrected data. Points
marked in red have been restored as potential
hits through the data-correction procedure.

the SMN-minigene reporters. This bias, even though Individual inspection is both desirable and appro-
priate for small numbers of plates, but when the numbersubtle and hard to detect by eye, may occlude potential

lead compounds. of plates is large, this approach is unwieldy. SLIMS facili-
tates high-throughput error detection by automaticallyWe used a periodogram technique to automatically

detect systematic errors [36]. Given a microtiter plate correcting for detected spatial patterns. To correct data,
we locate systematic patterns and remove them by re-seeded with random compounds and no robotic errors,

spatial patterns are unlikely and, indeed, unexpected. ducing the power of these high-amplitude outliers (Fig-
ures 3A–3C). Thus, high periodogram amplitudes, whichSLIMS computes a spatial randomness probability (Prandom)

for each assay plate. Prandom is a qualitative measure of are based on a random model, are suppressed. This
process makes the assumption that each plate has beenthe amount of nonrandom spatial patterning appearing

on the plate. For example, a Prandom value of 0.5 indicates generated by a random process. Each well is assumed
to be independent of all other wells in the plate. Correla-that the spatial pattern of the observed plate would be

recapitulated in one out of every two plates randomly tions discovered between wells are either real assay
responses, such as control wells, or some systematicgenerated with the same mean and standard deviation

as the observed plate. Plates that have a Prandom � 0.05 error pattern, such as a row or column effect. High peri-
odogram amplitudes imply correlated wells, and by sup-are flagged for user inspection. In other words, plates

that have a one in twenty chance of forming patterns pressing these periodogram amplitudes, SLIMS can
automatically remove spatial correlations (Figure 3B).that could be observed randomly are highlighted for

inspection. The plate in Figure 3 has systematic errors Figure 3C indicates the correction performed wherein
red regions of the plate have been corrected by loweringthat are difficult to detect by eye. This difficulty, com-

bined with the fact that, for some people, it is difficult the detected value, and blue regions indicate wells that
have been increased in value. Because correcting sys-to analyze hundreds of plates manually, suggests that an

automated method can be useful to correct systematic tematic error might in itself reduce real experiment re-
sponse, SLIMS stores both the corrected and uncor-errors.
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Figure 4. Diversity Analysis Using Self-Organizing Maps in SLIMS

(A) The self-organizing map generated through SLIMS using SLIMS database fingerprints. This SOM shows the structure-space location of
SMN2-LUC SMA hits. Each node in the SOM contains a collection of similar compounds, and each neighboring node is more similar than
nonneighboring nodes. Bright orange wells contain only compounds from the Comgenex (CGX) library, and dark orange wells contain mostly
CGX compounds. The SMA hits are shown in the crosshatched wells in the lower map. Notice that the Comgenex library (colored orange) is
clumped together in the SOM, which is indicative of a combinatorial library. The hits, however, are scattered around this representation of
structural space and indicate that many different targets are potentially involved. Two representative active compounds, aclarubicin and
chrysin, are marked on the lower map.
(B) Several classes of active analogs automatically generated from the SOM and by extracting scaffolds from lead compounds. These classes
are used to both validate and prioritize lead compounds for dilution series.

rected data so that analyses may span both result sets Once compounds were ranked using our scoring
mechanism, results of the SMN2-LUC (i.e., SMN2-mini-in order to find lead compounds.

We found that in the SMA screen, the main effect gene-reporter) screen were analyzed. A self-organizing
map (SOM) [41] was generated through SLIMS by map-corrected was one in which the left and right portions

of the plate had lowered luminescence intensities, prob- ping the structural space of our compound library (Fig-
ure 4A). SOMs have the property that regions closer toably due to evaporation from the plate edges. Each plate

was analyzed, and if a row, column, or edge effect was each other contain more similar compounds than re-
gions farther away. A structural fingerprint is computedlocated, it was automatically corrected using this tech-

nique. As a result of our systematic error correction tech- for each compound loaded into the SLIMS database.
This fingerprint is binary vector, representing structuresnique, low-scoring compounds were slightly boosted in

signal, and higher-scoring values were slightly lowered in located within the compound. This vector is primarily
intended to speed up substructure searching but hassignal (Figure 3D). Since we are looking for high-scoring

compounds, this slight correction does not significantly the side benefit of being usable to cluster compounds
together based on structure. The SOM illustrates thataffect the results of our assay. Even so, this technique

restored a small collection of compounds that would the Comgenex portion of our library is composed of
molecules in densely packed regions of descriptorotherwise have been missed (Figure 3D). In general, we

combine the results of the corrected and noncorrected space, which is likely due to the combinatorial nature
of the library. The lower SOM shows how compoundsdata when looking for follow-up or lead compounds.

Finally, comparing histograms of the corrected and non- that have greater than 50 percent enhancement span
this structural space. As expected, SMN2-LUC activecorrected data shows that the corrected mean value,

�0.1, is closer to the expected percent enhancement compounds, shown crosshatched in white, indicate that
hits tend to span descriptor space and range from largeof zero. The standard deviation of the corrected data is

also reduced, which is also expected since removal of stereochemically diverse structures such as aclarubicin
to simpler structure compounds like chrysin. Con-spatial artifacts should suppress spatially correlated

outliers. versely, if the active compounds had clumped together
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Figure 5. Analysis of Dilution Series Data in
SLIMS

Dilution series for (A) indoprofen and (B) an
indoprofen analog. From these analogs, only
indoprofen was SMN2 selective and had sig-
nificant increases in SMN2 production over
SMN1 production. The indoprofen analog ac-
tually had increased SMN1 production com-
pared to SMN2.

in descriptor space, then we could have simply chosen electronically. When dilution plates were added to
SLIMS, they were annotated with the cell type, and dilu-a few representative examples of structural families for

follow-up testing. tion curves were automatically calculated, fitting the
resulting curve fit with the standard Hill equation. FigureIn addition to exploring the chemical similarity of ac-

tive compounds, SLIMS can find related analogs within 5 shows the results of the 2-fold dilution for indoprofen,
a confirmed SMN2-selective compound, and a closetested libraries. Analogs are useful both in validating hit

compounds and in making an initial assessment of the analog that is not SMN2 selective.
After the screening process was completed, the hitstructure-activity relationship (SAR) surrounding each

chemical scaffold. These scaffolds can be discovered compounds were further analyzed to determine whether
they were members of a class of active structural ana-by analyzing the SOM or by allowing SLIMS to automati-

cally extract interesting chemical scaffolds from active logs. One particularly promising class of actives was
based on 6,7-dihydroxyflavone, which was SMN2-LUCcompounds and searching for like compounds. Finding

active analogs to lead compounds validates the leads selective. This analysis is similar to the so-called “leader
clustering,” where promising lead compounds are usedas genuine, and not statistical outliers, although the

same confidence can be gained with replicate testing. to analyze the assay response of compounds with re-
lated structures. SLIMS performs this by plotting theWe found a collection of analogs within the SMN2-LUC

SMA hits (Figure 4B). All of these were chosen for testing similarity score to a selected compound against the
assay response. As seen in Figure 6, by computing ain the secondary SMN1-LUC (SMN1-minigene-reporter)

screen. similarity score between 6,7-dihydroxyflavone and the
compound library, a small class of actives was discov-Each compound chosen was tested in a 2-fold, 16-

point dilution series at a maximal concentration of 10 ered, supporting the active and selective hypothesis. All
of the compounds in this class were selected for follow-�M in both SMN2-LUC and SMN1-LUC cell lines. We

sought compounds that enhanced SMN2 reporter pro- up secondary screening.
Finally, we used a built-in SLIMS module to searchduction but not SMN1 reporter production. By querying

the SMN2-LUC and SMN1-LUC data, we identified com- the Medline database to identify potential mechanisms
that might be influencing SMN2 protein production. Thispounds with good SMN2-LUC (SMN2) response and

poor SMN1-LUC (SMN1) response, allowing selection procedure greatly accelerates the search relative to the
time it would take using a Pubmed web-based interface.of compounds based on SMN2 selectivity.

These compounds were tested in a dilution series in We submitted the active compounds to a Medline search
that identified potential mechanisms of action. Eachboth the SMN2-LUC and SMN1-LUC cell lines. SLIMS

has simple wizards, similar to the standard protocol mechanism was ranked based on a statistical analysis of
compound-mechanisms pairings in Medline abstractscreation wizard, for rapidly creating dilution series plates
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Figure 6. One of the Potential Lead Compounds, 6,7-Dihydroxyflavone, which Is Also Selective against SMN1-LUC in the Primary Screen, Is
a Member of a Structural Family that Has Many Active Members

SLIMS generates an analysis of assay response versus similarity to the target compound. The highlighted group of compounds are similar
to the potential lead compound and have a difference score close to zero. The figure plots each of the compounds’ similarities to 6,7-
dihydroxyflavone against their mean percent enhancement. The highlighted points are the active members of this class. The histogram in red
is a histogram of the library’s response to this assay and indicates that this structural class has a significant active response compared to
the library as a whole.

[40]. Table 1 identifies a collection of mechanisms that access to results by displaying SLIMS projects and ex-
periments and allowing users to download the specifiedmight be influencing SMN2 reporter production.
results in either Microsoft Excel format documents or
as SLIMS ready-to-open databases, as well as handlingFuture Directions

We are currently testing a world wide web interface to the laboratory inventory and ordering.
the SLIMS database. This service allows users to locate
the structures of compounds on various plates in the Significance
database and to perform substructure and similarity
searching to query the library as well as interface to the We have created a powerful software tool for tracking
Lab Inventory System. The web service also provides and analyzing chemical screening data. This tool is

particularly well suited to chemical genetic screens
because it allows for flexible and dynamic analyses

Table 1. Library NINDS Version 2
and collaborative sharing of data, which are hallmarks

Mechanism Drug Drug of such research projects. This software system not only
tracks and analyzes chemical screening data, but it hasAntioxidants aclarubicin

Pp apigenin several novel features not found in existing software
DNA aclarubicin tools: it automatically identifies and corrects system-
Protein synthesis aclarubicin atic error, it automatically queries Medline for potential
Glycosylation aclarubicin mechanisms of action for compounds of interest, it allows
Anticoagulants anisindione

rapid and flexible protocol creation, and it allows simpleCyclooxygenase indoprofen rhapontin
transfer and sharing of data for collaboration or publica-Jun anisindione

Antibiotics aclarubicin tion. This tool and the corresponding source code are
Up rhapontin freely available for academic use. We hope that this
Anti-inflammatory agents indoprofen system will enable sophisticated chemical genetic
Cdk2 rhapontin screening efforts in a wide variety of academic labora-
Cell cycle rhapontin

tories.Phosphatase rhapontin
Cdk6 rhapontin
Tf anisindione Experimental Procedures
Antibiotic aclarubicin
Anticarcinogenic agents rhapontin Cell Culture
Actin apigenin Immortalized human cervical carcinoma cells (c33a) stably trans-

fected with a construct that contains either SMN1 or SMN2 exonsMedline search based on SMN2-LUC hits. The annotated compound
6–8, neomycin resistance, and a luciferase reporter gene [39] werelibrary can be used to search for mechanisms that affect a cellular
cultured in Dulbecco’s modified Eagle’s meduim (DMEM) (JRH Bio-process. This table shows potential mechanisms of our SMN2-LUC
sciences/#56499-10L) that was supplemented with 10% (v/v) fetalactive compounds.
bovine serum (FBS) (Sigma/#F2442), G418 selective antibiotic
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(GIBCO-BRL/#11811-031), and other antibiotics (50,000 units peni- roids. Many natural products and compounds derived from natural
products fall into the steroid class. While useful, these compoundscillin/L DMEM, 50 mg streptomycin/liter DMEM) (Sigma/#P4333).

Cells were allowed to grow at 37�C with 5% carbon dioxide in Corn- are heavily studied and can have pleiotropic effects. (3) Maximize
the number of chiral centers. The number of chiral centers in aing 175 cm2 vented tissue culture flasks (VWR Scientific/#29560-

970). molecule is a basic indicator of structural complexity. (4) Minimize
unsaturated rings. Combinatorial libraries tend to have a large num-Type I spinal muscular atrophy (SMA)-affected human primary

fibroblasts (#GM03813) and carrier parents (#GM03814, mother and ber of aromatic rings, while natural products tend to have saturated
heterocyclic rings.#GM03815, father) were obtained live with low passage number from

Coriell Cell Repositories. They were cultured in minimum essential When this library was assembled, the FROWNS scripting system
(http://frowns.sourceforge.net/), a component of SLIMS, was heavilymedium (MEM) with Earle’s salts and nonessential amino acids

(GIBCO/#10370) that was supplemented with 15% (v/v) fetal bovine employed during the selection process. Using this scripting system,
collaborators can precisely duplicate the selection criteria on theirserum (FBS) (Sigma/#F2442), 2 mM l-glutamine (US Biologicals/

#G7120), and antibiotics (50,000 units penicillin/liter MEM, 50 mg own data sets or duplicate the creation of the TIC library.
SLIMS and all the raw data described herein are available at http://streptomycin/liter MEM) (Sigma/#P4333). Cells were allowed to

grow at 37�C with 5% carbon dioxide in Corning 175 cm2 vented www.StockwellLab.org/slims.
tissue culture flasks (VWR Scientific/#29560-970).

Acknowledgments
Preparation of Compound Library for Primary Screening
Compound libraries were either obtained at a concentration of 4 This research of B.R.S. was supported in part by a Career Award
mg/ml in dimethyl sulfoxide (DMSO) or were solubilized and plated at the Scientific Interface from the Burroughs Wellcome Fund, by the
at this concentration in 384-well stock “mother” plates. These com- National Cancer Institute (R01CA97061), and by Andrew’s Buddies.
pounds were then diluted into an aqueous medium to create “daugh-
ter” plates as follows: 147 �l of Dulbecco’s modified Eagle’s medium Received: July 10, 2004
was dispensed, using a Zymark SciClone ALH, into each well of a Revised: August 12, 2004
Greiner 384-well, clear, polypropylene, 22 mm deep daughter plate Accepted: August 31, 2004
(E&K Scientific/#EK-30202). Three microliters from the mother plate Published: November 29, 2004
was transferred to the daughter plates using a Zymark SciClone ALH
with 384-well fixed-tip pipetting head. This resulted in a compound References
concentration of 80 �g/ml in each well of the daughter plates.

1. Schreiber, S.L. (1998). Chemical genetics resulting from a pas-
Cell Seeding into 384-Well Plates and Compound sion for synthetic organic chemistry. Bioorg. Med. Chem. 6,
Primary Screening 1127–1152.
C33a cells were detached from the flasks using trypsin-EDTA (0.25% 2. Crews, C.M., and Splittgerber, U. (1999). Chemical genetics:
trypsin, 1 mM EDTA • 4 Na) (Life Technologies/#15050065). The exploring and controlling cellular processes with chemical
cells were rinsed with 3 ml trypsin-EDTA, which was immediately probes. Trends Biochem. Sci. 24, 317–320.
aspirated. The cells were then incubated for 5–10 min at 37�C with an 3. Stockwell, B.R. (2000). Chemical genetics: ligand-based discov-
additional 3 ml of trypsin-EDTA. The trypsin enzyme was neutralized ery of gene function. Nat. Rev. Genet. 1, 116–125.
with 7 ml of media (normal C33a culture media lacking G418). Two 4. Stockwell, B.R. (2000). Frontiers in chemical genetics. Trends
to three 10 ml aliquots were combined and centrifuged at 228 � g Biotechnol. 18, 449–455.
(1000 rpm) for 5 min. The supernatant was aspirated, and the cells 5. Koh, B., and Crews, C.M. (2002). Chemical genetics. A small
were resuspended at a concentration of 200,000 cells/ml in G418- molecule approach to neurobiology. Neuron 36, 563–566.
free media. The cell suspension was kept at 14�C, and constant 6. Stockwell, B.R. (2002). Chemical genetic screening approaches
stirring at 300 rpm ensured that the suspension was maintained. to neurobiology. Neuron 36, 559–562.
Fifty-seven microliters of cell suspension was dispensed, using a 7. Lokey, R.S. (2003). Forward chemical genetics: progress and
Zymark SciClone ALH, into each well of a Nunc 384-well, opaque, obstacles on the path to a new pharmacopoeia. Curr. Opin.
white, tissue-culture-treated, 13 mm deep, assay plate (VWR Scien- Chem. Biol. 7, 91–96.
tific/#62409-072) for a concentration of 11,400 cells/well. Three mi- 8. Schreiber, S.L. (2003). The small-molecule approach to biology:
croliters from the daughter plate was transferred to each assay plate Chemical genetics and diversity-oriented organic synthesis
using a Zymark SciClone ALH with 384-well fixed-tip pipetting head; make possible the systematic exploration of biology. Chem. &
this resulted in a compound concentration of 4 �g/ml. The plate Eng. 1199 News 81, 51–61.
was covered with a lid and incubated at 37�C and 5% carbon dioxide 9. Hertzberg, R.P., and Pope, A.J. (2000). High-throughput screen-
for 48 hr. ing: new technology for the 21st century. Curr. Opin. Chem.

Biol. 4, 445–451.
SLIMS Development 10. Jenssen, T.K., Laegreid, A., Komorowski, J., and Hovig, E.
SLIMS was created using many open source tools. SLIMS was (2001). A literature network of human genes for high-throughput
programmed in Python (http://python.org/) using the wxWidgets analysis of gene expression. Nat. Genet. 28, 21–28.
(http://wxwidget.org/) GUI framework. The standalone database 11. Rindflesch, T.C., Tanabe, L., Weinstein, J.N., and Hunter, L.
used is metakit from Equi4 software (http://equi4.com/). SLIMS is (2000). EDGAR: extraction of drugs, genes and relations from
hosted on the sourceforge open source repository and can be down- the biomedical literature. Pac. Symp. Biocomput. 2000,
loaded from http://slims.sourceforge.net/. Several software toolkits 517–528.
were employed for SLIMS development, including scientific python 12. Shi, L.M., Fan, Y., Lee, J.K., Waltham, M., Andrews, D.T., Scherf,
(http://www.scipy.org/), used primarily for building the error correc- U., Paull, K.D., and Weinstein, J.N. (2000). Mining and visualizing
tion routines. large anticancer drug discovery databases. J. Chem. Inf. Com-

put. Sci. 40, 367–379.
13. Weinstein, J.N., Myers, T.G., O’Connor, P.M., Friend, S.H., For-Compound Library Creation

A portion of the compounds used in the SMA screen were selected nace, A.J., Jr., Kohn, K.W., Fojo, T., Bates, S.E., Rubinstein,
L.V., Anderson, N.L., et al. (1997). An information-intensive ap-using SLIMS. These compounds formed our TIC library. To facilitate

selection of molecules for screening, SLIMS employs a molecular proach to the molecular pharmacology of cancer. Science 275,
343–349.scripting system component developed by us. The TIC library was

assembled from natural product libraries purchased from commer- 14. Brent, R. (2000). Genomic biology. Cell 100, 169–183.
15. Engels, M.F., and Venkatarangan, P. (2001). Smart screening:cial sources and was designed by selecting several chemical fea-

tures according to the following rules: (1) Select compounds for approaches to efficient HTS. Curr. Opin. Drug Discov. Dev. 4,
275–283.library from naturally derived sources. (2) Limit the number of ste-



Data Analysis Tool for Chemical Genetics
1503

16. Weinstein, J.N., and Buolamwini, J.K. (2000). Molecular targets responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci.
USA 96, 6307–6311.in cancer drug discovery: cell-based profiling. Curr. Pharm. Des.

6, 473–483. 39. Zhang, M.L., Lorson, C.L., Androphy, E.J., and Zhou, J. (2001).
An in vivo reporter system for measuring increased inclusion of17. Stanton, D.T., Morris, T.W., Roychoudhury, S., and Parker, C.N.

(1999). Application of nearest-neighbor and cluster analyses in exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther.
8, 1532–1538.pharmaceutical lead discovery. J. Chem. Inf. Comput. Sci. 39,

21–27. 40. Root, D.E., Flaherty, S.P., Kelley, B.P., and Stockwell, B.R.
(2003). Biological mechanism profiling using an annotated com-18. Giuliano, K.A., and Taylor, D.L. (1998). Fluorescent-protein bio-

sensors: new tools for drug discovery. Trends Biotechnol. 16, pound library. Chem. Biol. 10, 881–892.
41. Kohonen, T. (2001). Self-organizing maps. In Springer Series in135–140.

19. Maeda, I., Kohara, Y., Yamamoto, M., and Sugimoto, A. (2001). Information Science, Volume 30 (Berlin: Springer).
Large-scale analysis of gene function in Caenorhabditis elegans
by high-throughput RNAi. Curr. Biol. 11, 171–176.

20. Roberge, M., Berlinck, R.G., Xu, L., Anderson, H.J., Lim, L.Y.,
Curman, D., Stringer, C.M., Friend, S.H., Davies, P., Vincent, I.,
et al. (1998). High-throughput assay for G2 checkpoint inhibitors
and identification of the structurally novel compound isogranu-
latimide. Cancer Res. 58, 5701–5706.

21. Silverman, L., Campbell, R., and Broach, J.R. (1998). New assay
technologies for high-throughput screening. Curr. Opin. Chem.
Biol. 2, 397–403.

22. Simons, A., Dafni, N., Dotan, I., Oron, Y., and Canaani, D. (2001).
Establishment of a chemical synthetic lethality screen in cul-
tured human cells. Genome Res. 11, 266–273.

23. Stockwell, B.R., Haggarty, S.J., and Schreiber, S.L. (1999). High-
throughput screening of small molecules in miniaturized mam-
malian cell-based assays involving post-translational modifica-
tions. Chem. Biol. 6, 71–83.

24. Tamura, S.Y., Bacha, P.A., Gruver, H.S., and Nutt, R.F. (2002).
Data analysis of high-throughput screening results: application
of multidomain clustering to the NCI anti-HIV data set. J. Med.
Chem. 45, 3082–3090.

25. Goh, C.S., Lan, N., Echols, N., Douglas, S.M., Milburn, D., Ber-
tone, P., Xiao, R., Ma, L.C., Zheng, D., Wunderlich, Z., et al.
(2003). SPINE 2: a system for collaborative structural proteomics
within a federated database framework. Nucleic Acids Res. 31,
2833–2838.

26. Koprowski, S.P., Jr., and Barrett, J.S. (2002). Data warehouse
implementation with clinical pharmacokinetic/pharmacody-
namic data. Int. J. Clin. Pharmacol. Ther. 40, S14–S29.

27. McDowall, R.D. (1993). An update on laboratory information
management systems. J. Pharm. Biomed. Anal. 11, 1327–1330.

28. Turner, E., and Bolton, J. (2001). Required steps for the valida-
tion of a Laboratory Information Management System. Qual.
Assur. 9, 217–224.

29. Goodman, N., Rozen, S., Stein, L.D., and Smith, A.G. (1998). The
LabBase system for data management in large scale biology
research laboratories. Bioinformatics 14, 562–574.

30. Fay, N., and Ullmann, D. (2002). Leveraging process integration
in early drug discovery. Drug Discov. Today 7 (20 Suppl.), S181–
S186.

31. Ausman, D.J. (2001). Screening’s age of insecurity. Mod. Drug
Discov. 4, 32–34.

32. Bajorath, J. (2002). Integration of virtual and high-throughput
screening. Nat. Rev. Drug Discov. 1, 882–894.

33. Zhang, J.H., Chung, T.D., and Oldenburg, K.R. (1999). A simple
statistical parameter for use in evaluation and validation of high
throughput screening assays. J. Biomol. Screen. 4, 67–73.

34. Mills, J.C., Roth, K.A., Cagan, R.L., and Gordon, J.I. (2001). DNA
microarrays and beyond: completing the journey from tissue to
cell. Nat. Cell Biol. 3, E175–E178.

35. Root, D.E., Kelley, B.P., and Stockwell, B.R. (2002). Global analy-
sis of large-scale chemical and biological experiments. Curr.
Opin. Drug Discov. Dev. 5, 355–360.

36. Root, D.E., Kelley, B.P., and Stockwell, B.R. (2003). Detecting
spatial patterns in biological array experiments. J. Biomol.
Screen. 8, 393–398.

37. Li, C., and Hung Wong, W. (2001). Model-based analysis of
oligonucleotide arrays: model validation, design issues and
standard error application. Genome Biol 2, research0032.1–
0032.11. 10.1186/gb-2001-2-8-research0032.

38. Lorson, C.L., Hahnen, E., Androphy, E.J., and Wirth, B. (1999).
A single nucleotide in the SMN gene regulates splicing and is


